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Nonstationary Random Parametric Vibration
in Light Aircraft Landing Gear

D. E. Huntington* and C. S. Lyrintzis¥
San Diego State University, San Diego, California 92182

In this work, a new approach for analysis of random vibration in light aircraft landing gear for a
given duty cycle is developed and studied. The aircraft is modeled as a linear, single-degree-of-freedom
oscillator with random properties, including nonstationary damping and random nonstationary load. Note
that this type of problem is difficult to analyze efficiently using most conventional techniques. Two ap-
proaches to analyze the random vibration of the system are examined: a new variant of the random
matrix approach, a statistical random vibration analysis method developed previously by the authors;
and a hybrid Monte Carlo technique containing a spectral representation approach and a variant of
Latin hypercube sampling. Random response results are shown for two light aircraft landing on three
different terrain types using each method, and comparisons are offered. These results show that Monte
Carlo analysis cannot compute accurate solutions for this problem. It is anticipated that the proposed
random matrix technique could be used in conjunction with current fatigue analysis methods so that
accurate landing gear fatigue information may be computed.

Nomenclature
= random property matrix
aircraft horizontal acceleration
ground spectral density coefficient
lift curve slope
total damping
strut and tire damping
wing damping
Young’s modulus of strut material
external loading on aircraft
gravitational acceleration
second area moment of strut cross section
strut stiffness
strut ground length
mass of aircraft
= number of discrete wave numbers used, ground
spectral density exponent
= random load vector
= wing area
ground height spectral density
= deflection spectral density
= ground distance from touchdown
= total landing time
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t = time

t, = brake delay time

V= aircraft ground speed

V., = aircraft descent velocity

V.. = wind speed

Vo = initial aircraft ground speed
X = displacement amplitude

X = relative displacement function
{x} = relative displacement vector
x, = ground surface height

Xo = initial relative displacement
B = lift-to-weight ratio

Bo = initial lift-to-weight ratio

vy = strut and tire structural damping factor
At = time step size

Ak = wave number spacing

0 = vertical strut angle

K = wave number

= ground friction coefficient

p = air density

¢é = random phase angle

w = frequency

Introduction

ANDOM vibration of aircraft landing gear, even in light

aircraft, is important because random vibration analysis
is needed to conduct accurate fatigue analysis. Fatigue analysis
and testing of landing gear is used both for aircraft life esti-
mates and for inspection schedules. If the estimated fatigue
damage is significantly incorrect, then either safety problems
may result or the aircraft may be retired earlier or be inspected
more often than necessary. More importantly, it may be desir-
able to design an aircraft for improved fatigue performance,
and thus it becomes necessary to estimate fatigue life of a new
aircraft from early design stages. The random vibration anal-
ysis techniques offered in this work would allow designers to
estimate landing gear vibration environments, so that accurate
fatigue life may be computed, and the landing gear design may
be changed early and inexpensively if needed.

Analysis of deterministic vibration in light aircraft landing
gear is fairly simple. The two aircraft analyzed in this work
have landing gear composed of leaf spring struts, which act as
linear springs if small deflection is assumed. The damping in



146 HUNTINGTON AND LYRINTZIS

the system comes from the struts and tires when deflecting,
and from the wings when the vertical velocity (with respect to
the air) changes; this damping happens to be linear for rela-
tively high ground speed. The external loading on the system
results from weight, lift, and the surface profile. Note that the
ground speed affects damping and lift and is needed to deter-
mine the ground height at the aircraft wheels as a function of
time from the height as a function of space. Thus, if an aircraft
is accelerating, e.g., during landing or takeoff, both the effec-
tive load and the aerodynamic damping become functions of
time, making the problem more difficult.

When examining landing gear vibration, it may be more
meaningful to consider the properties and loading to be ran-
dom. For example, the mass of the aircraft, fuel, passengers,
and cargo may vary appreciably from one duty cycle, i.e., a
takeoff or landing, to another. As mentioned in the preceding
text, effective damping depends on the ground speed, which
can be considered a random process. Also, the ground surface
is a random field varying in space; the ground height at the
aircraft wheels may then be expressed as a random process in
terms of the aircraft’s ground speed. Finally, the initial descent
velocity of the aircraft is a random variable. Thus, a vibration
analysis of an aircraft duty cycle should take into account ran-
dom initial conditions, nonstationary random loading, and ran-
dom, nonstationary time-varying properties; such a vibrating
system is said to undergo nonstationary random parametric
vibration and is very difficult to analyze.

Most early work in random parametric vibration analysis is
well summarized in a monograph by Ibrahim' and uses Mar-
kov methods based on Ito stochastic calculus or the Fokker-
Planck- Kolmogorov equation. However, these methods are
limited to systems with load and properties that are noise or
filtered noise, and they often yield an infinite hierarchy of
equations that can only be solved with some difficulty. Another
statistical method mentioned in Ibrahim' is stochastic averag-
ing, which assumes that the response process will be nearly
harmonic with an amplitude and phase angle that varies slowly
with time. Stochastic averaging is useful for a system with
small variations in stiffness and nearly harmonic loading, but
many problems of interest simply do not meet these criteria.
Therefore, none of these early methods are entirely suitable
for the analysis of general linear systems undergoing random
parametric vibration.

Current techniques that could possibly be used for random
parametric vibration would come from stochastic finite ele-
ment analysis.” * Stochastic finite elements allow for static or
dynamic analysis of linear or nonlinear systems with deter-
ministic load and random, time-invariant, spatially dependent
properties. An interesting statistical stochastic finite element
technique proposed by Ghanem and Spanos’ uses a Kar-
hunen-Loeve expansion of the property spatial covariance
eigenfunctions, and it works well for properties that have noise
or filtered-noise spatial correlations. However, this technique
is difficult to extend to systems with stochastic loading or time-
dependent properties. In general, stochastic finite element tech-
niques have this limitation, and thus they are not well-suited
to analysis of nonstationary random parametric vibration.

A current approach that has been used to successfully ana-
lyze stationary random parametric vibration problems is the
Monte Carlo simulation. Monte Carlo methods represent a ran-
dom variable by a set of equally weighted deterministic values,
allowing relatively fast and simple analysis. The heart of any
Monte Carlo method is the sample generation scheme, and
several such schemes have been used for various purposes. For
example, the autoregressive moving average method®” and
the spectral representation method®” can simulate stationary
Gaussian random fields or processes, while Latin hypercube
sampling'® ' can simulate any number of correlated variables
of any type. Indeed, Seya et. al.”> employed Latin hypercube
sampling for building property simulation while using the
spectral representation method to generate sample seismic load

histories, illustrating that sample generation schemes may
sometimes be combined. Monte Carlo simulation may be a
good choice to analyze nonstationary random vibration.

Another technique that may do well in analysis of nonsta-
tionary random parametric vibration was developed by
Huntington and Lyrintzis' to obtain response statistics in sta-
tionary random parametric vibration problems. The technique,
known as the random matrix method, formulates the random
vibration problem in terms of a random matrix equation in the
frequency domain. A truncated Neumann expansion is used to
obtain statistics of the inverse matrix from the statistics of the
original matrix. Huntington and Lyrintzis' used this technique
to parametrically study the response of a single-degree-of-free-
dom system with random stationary loading and random, time-
varying stationary stiffness.”> Thus, the random matrix ap-
proach may be a good technique to handle the landing gear
vibration problem presented here.

The aircraft and landing gear in this work will be modeled
as a linear, single-degree-of-freedom system with random in-
itial conditions, random nonstationary time-varying properties,
and random nonstationary loading. As mentioned previously,
variations of the random matrix approach and Monte Carlo
simulation will be presented, and advantages and disadvan-
tages for each method will be discussed. Using the proposed
techniques, response statistics will be determined for two air-
craft landing on three different terrain types, and comparisons
will be offered. Finally, conclusions will be drawn as to the
importance of random property modeling in this problem and
the utility and accuracy of the proposed techniques.

Aircraft Model

The undeformed geometry of a leaf spring strut used in light
aircraft landing gear is shown in Fig. 1. Each strut has a rec-
tangular cross section and is uniform along its length; the stiff-
ness of a single strut can be found from small deflection beam
theory, assuming that the strut is a cantilever beam affixed to
the fuselage. The total stiffness of both struts is given by

k = (6EI/L*)sin(0) (1)

The mass of the aircraft can of course be derived from its
weight (which is assumed to be time-independent):

m=W/g (2)

The damping in the system comes from two sources: 1) struc-
tural damping in the tires and struts, and 2) aerodynamic
damping from the wing (which is caused by changes in effec-
tive angle of attack from the aircraft’s vertical velocity). The
total damping is given by

c=vyVkm + %Cmp(V + V.S 3)

Equation (3) is valid only when the aircraft’s airspeed is much
higher than its vertical velocity. This condition is true for the
aircraft landing problems studied in this analysis.

In fatigue analysis, we are interested in the relative displace-
ment of the aircraft with respect to the ground. This means
that the load term will have a contribution from the external

Fig. 1 Geometry of a leaf spring
landing gear strut used in this work.
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force on the aircraft (weight and lift) and a contribution from
the x,. This effective load becomes

f=w |:1 - Bo (%) :| — mxy(s)a — m)c;l(s)V2

= 3pSCrax(s)V? @)

where the primes denote spatial derivative. This loading func-
tion assumes that the aircraft is always in contact with the
ground, which will not always be the case in an actual landing.
However, to ensure that the analyzed system is linear, this
assumption is required for the vibration analysis. Finally, the
initial displacement is zero, because ¢ = 0 represents touch-
down, and the initial downward velocity is a random variable.

Some points should also be made regarding the ground
height field. The spectral density for this field is assumed to

16,

have the following form ":
S (k) = Cx ™ (5)

where the exponent N = 2.1 for most landing surfaces; the spec-
tral density for ground slope can be obtained by multiplying S, (k)
by K2, and the ground curvature spectral density is S,xy(K)K“. There
are potential problems with this spectral density at both low wave
number and high wave number. At very low wave number, the
spectral density for the ground height and slope approach infinity,
which is not realistic; this difficulty is minimized in a discrete
wave number domain by setting S, (0) = 0, and by using a wave
number step size that is sufficiently large. At very high wave
number, the spectral density for the ground curvature blows up.
However, a tire would smooth out these high-wave number dis-
turbances. One form of the ground height spectral density that
accounts for a finite tire contact patch is

(6)

sin(kl/2) ?
kl/2

S,xy(K) =Ck " |:

As can be seen from Egs. (3) and (4), the load and damping
of the aircraft depend on its ground speed V; also, the loading
depends on the integral of ground speed (s, distance traveled)
and the derivative of ground speed (a, aircraft horizontal ac-
celeration). Therefore, some model for ground speed must be
assumed. The ground speed model for aircraft landing used
here makes several assumptions. First, the drag on the aircraft
is neglected; the aircraft’s velocity changes are assumed to
result from braking alone. The braking force is assumed to
depend only on the aircraft’s lift and weight, not on local
ground surface profile. Finally, the attitude of the aircraft and
control surfaces is assumed to be constant during the landing
roll. With these assumptions, the ground speed is given by

Vi) =V, t<t,y

Vi = Yo 1L+ Bo— (1~ Bolexpluug(t — tBo/Vol)
Bo {1 + Bo + (I — Boexp[ gt — t)Bo/Vol)}

Vv 1+
ty<t<t;+ ——1log Bo
2p.8Bo 1 = Bo

V(t) = 0, otherwise

A different velocity model would be used for takeoff or taxi
analysis.

Random Matrix Method

There are four steps in the random matrix method. First, the
equations of motion for the system are cast into matrix form.
Then, statistics are obtained for the matrix and load vector
elements. Next, statistics of elements of the inverse matrix are
found from statistics of the original matrix. Finally, the desired

response statistics are computed and are used to generate fur-
ther output, if needed.

The first step of the random matrix method, discretization,
is fairly simple. The vibration differential equation of vibration
motion for the aircraft is given by

mx(t) + c()x(t) + kx(t) = f(r) (8)

where overdots denote temporal derivatives. This equation can
be discretized in the time domain through the use of central
difference equations. Once this discretization is accomplished,
the differential equation becomes a matrix equation

[Al{x} = {p} )
where the elements of matrix [A] are given by

Ay = 2m/AFP
A, = mIAf? + ¢, /QAY, i>1
Aw-n =k = 2m/Ar (10)
Aoz = mIA? — ¢, /(2A1)

A; =0, otherwise

where a subscript index i is used to denote the ith discrete
time. The load vector elements, incorporating both load effects
and initial condition effects, are

pi=fo— (k — 2mIAP)x, + QmIAt — co)vo

p2=fi — [m/Af? — ¢, /(2AD]xo an
pi=ficr, 1>2

where for a landing analysis, X, is zero and v, is taken to be
the descent velocity V.

The next step in the random matrix method is to generate
statistics for properties, load, and initial conditions. The com-
plicated velocity model in Eq. (7) makes it extremely difficult
to compute these statistics directly from the random variables
in the problem. Therefore, Latin hypercube sampling (discussed
in the following section) will be used to simulate the random
variables so that the needed statistics can be computed quickly
and accurately. Note that the ground field is not simulated, but
the statistics of the field are used directly. The ground field has
mean derivative and curvature zero, so that the expected value
of the load is independent of the ground surface

v+ v\
ELf] = EIWIE [1 -~ Bo (ﬁ) } (12)

Similarly, cross-covariances between properties and load will not
refer to the ground field, because the properties do not correlate
with the ground field and because the ground slope and curvature
have zero mean. However, the ground field autocovariance will
be used to obtain the load’s autocorrelation function:

2 v,+ v\
E[fif] = EIW7IE {[1 = Bo (m) }

V. + V. \’

1
+ E[mz]E[Rlvy(sj — s)a,a;] + 5 pSCmE[m]E[Rlvy(sj — 5

1
X (a,V? + Via)] + 7 p’S’CL.E[R.(s; — s)ViV]]  (13)
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The expected values E[ ] in Eq. (13) can be obtained with the
aid of Latin hypercube sampling, as mentioned previously. Val-
ues of a, V, and s at each time step can be found for a given
realization of the problem’s random variables. The ground field
autocovariance at certain points can be obtained by a discrete
Fourier transform of the spectral density found in Eq. (6):

2mij ) (14)

N
R, (iAs) = 2 S, (jAK) j?Ak® cos <2N -
Y

N
-
Ro(iAs) = D $,(jAK) j*AK® cos (#) (15)
N

where

2

As=—2
STACN + D)

(16)

Often, the argument of the ground autocovariance functions
will not be an integer multiple of As because of velocity non-
stationarity. Values of the ground field autocovariance at dis-
tances other than an integer multiple of As should be found
by interpolation, not by substituting the desired value of s into
Egs. (14) or (15). This is because higher wave numbers will
dominate the curvature spectral density over a fairly large
wave number range (to 10 rad/in. or higher), and so the com-
puted curvature autocovariance will be highly oscillatory, with
peaks at integer multiples of As. Thus, interpolation should be
used for autocovariance values at other locations.

The third step in the random matrix method is the acquisi-
tion of deflection statistics from the statistics of the property
matrix and load vector. To do this, the random matrix method
employs the Neumann expansion. First, [A] is separated into
a mean and a deviatoric part

[A] = [A] + [A"] a7)

where the prime denotes the deviatoric part and the overbar
denotes the mean. Then, the inverse of [A] may be expressed
using the Neumann expansion'’

[A]""= (U] = [P] + [P — - )IA]

- (18)
[P] = [A] '[A"]

Note that the Neumann expansion does not require the in-
verse of the random deviatoric part of the matrix, though the
inverse of the deterministic mean part is needed. Thus, the
Neumann expansion allows computation of statistics in the in-
verse matrix from statistics in the original matrix.

Finally, the desired response statistics can be computed from
the load element statistics and the statistics of the inverse ma-
trix elements, using

{x} = [A] '{p} (19)

This matrix equation has some characteristics that may
speed up computation time. The deviatoric matrix is banded
with a width of three elements, and the inverse mean matrix
will be lower triangular. If there are n time steps, the entire
random matrix technique will take on the order of n’ multi-
plications, yielding a relatively fast solution. In addition, sto-
chastic stability problems that were present in the frequency

in'*'® are absent in the time domain formulation. Thus,
the random matrix technique is ideal for obtaining statistics of
the strut vibration in a light aircraft on takeoff, landing, or
taxi.

Monte Carlo Techniques

There are two reasons why Monte Carlo simulation is used
in this problem. First, as mentioned previously, Monte Carlo

simulation of the problem’s random variables is necessary to
obtain the required property and load means and covariances
required by the random matrix method. Also, a full Monte
Carlo analysis will provide results that can be compared to
those obtained by the random matrix method, so that the ac-
curacy of each method can be examined. This Monte Carlo
analysis will use a hybrid approach: the random parameters in
the problem will be simulated by Latin hypercube sam-
pling,"*'* and the ground process will be simulated using the
spectral representation method.*’

Latin hypercube sampling works well at simulating a small
number of correlated or uncorrelated variables with any mar-
ginal probability distribution functions, and so will be used to
simulate the random parameters in this problem. The method
simulates each variable with a set of ordered samples, allowing
the simulated variables to match both target marginal proba-
bility density functions for each variable (from good sample
generation) and covariances between variables (from good
sample ordering). Note that an improved Latin hypercube for-
mulation has recently been developed by the authors; this for-
mulation has superior sample generation and sample ordering
compared to conventional approaches,'”® and though it takes
more computation time than current methods, it is far more
accurate. Therefore, the new formulation will be used in this
work.

Latin hypercube sampling works well for a relatively small
number of random variables, but not for simulating random
processes or fields. To simulate the stationary ground field, the
nominal spectral representation approach will be used. The
ground field height can be represented by®’

. 2ij
x(ilAs) = Z\, [ \/ZSxy(jAK)AK cos (ﬁ + d>j> 20)
where As is defined in Eq. (16), and the &, are independent,
uniformly distributed phase angles on [0, 27]. Thus, a sample
ground field can be obtained by a set of sample phase angles.

Values of ground height at distances other than integer mul-
tiples of As can be obtained either by interpolation or by plug-
ging the desired distance into Eq. (20) in place of iAs. It is
not clear which method would yield more accurate load sta-
tistics. The problems with simply plugging in the distance have
been mentioned in the previous section: because high wave
number values of the Fourier transform of the ground curva-
ture are dominant, the simulated ground field will be highly
oscillatory between integer multiples of As. On the other hand,
interpolating the ground field values can also lead to significant
errors in ground field autocovariance. For example, when com-
puting the variance of ground curvature at a point halfway
between integer multiples of As, the computed variance from
interpolation would be

Ra(0) = R.(0) + 2R.(As) @1

when the actual variance is, of course, R,xL(O). The computed
variance will be too small, because R,xL(O) is larger than R,x;,(As).
Because it is not clear which approach gives better results,
both interpolation and plugging in will be used in the hybrid
Monte Carlo simulation results for this problem.

When using the hybrid Monte Carlo technique, Latin hy-
percube is used to simulate random parameters in the problem,
while the random phase angles for the ground process are ob-
tained by a random number generator. Note that multiple
ground fields are needed for each Latin hypercube sample set
to ensure accurate results.

Details of Computation

Random vibration response will be estimated for two light
amphibious aircraft: 1) the Teal Amphibian and 2) the Lake
Renegade. The two aircraft differ primarily in size: the Teal
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seats two, whereas the Lake seats four. Data for the Teal Am-
phibian were found in an aircraft design book," whereas data
for the Lake Renegade were obtained from Lake Aircraft’s
World Wide Web site. Deterministic parameters for each air-
craft are specified in Table 1, whereas the random parameters
used for the computation, which are independent, are specified
in Table 2; the descent velocity distribution was obtained from
an aircraft design manual.”® Three ground surfaces are used in
this work; all are assumed to have spectral densities of the
form found in Eq. (6), with N equal to 2.1, and with various
values of C, which are found in Table 3.'

The response of both aircraft landing on the three surface
types will be evaluated. For some cases, the random param-
eters in the problem are as shown Table 2; for others, these
random parameters are taken to be their mean values. In all
cases, the time step is 0.01 s, and there are 300 time steps
considered, so the first 3 s of the landing are analyzed; the
time step allows roughly 20 time steps per natural period of
either aircraft. Also, the wave number step size is 0.0000785
rad/in. (which is sufficiently large to avoid problems at the
first wave number step), and 500 wave number steps are used,
yielding a maximum wave number of 0.03925 rad/in. This
maximum wave number seems rather small, but it is adequate
to bracket the natural frequency of either aircraft at typical
landing speeds, and it is large enough to avoid low-wave num-
ber problems for the ground spectral density. For each case,
100 hypercube samples were used, and 10 ground fields were
used for each hypercube sample in the hybrid Monte Carlo
simulation. The random matrix runs took roughly twice as long

Table 1 Deterministic parameters
used in this work®

Symbol Teal value Lake value
Cr.. 4.864 5.034
E, Ib/in.” 3.00E+7 3.00E+7
g, in./s® 386.4 386.4
h, in. 0.69 1.1875
I in* 0.082 0.66

I, in. 3.0 3.0

L, in. 22.5 40

S, ft© 157 164

v 0.08 0.08
0, deg 58 58
plb s¥in.* 1.13E—7 1.13E—7

“Values of these parameters are shown for the
Teal Amphibian and the Lake Renegade.

Table 2 Random variables used in

this work®

Standard
Symbol Type Mean development
ta$ Rayleigh 0.5 0.261
Vo in./s Normal 881/1057 70.4
Vs in./s  Weibull 14.46 9.178
V.. in./s Normal 175 70.4
W, 1b Normal 19752600 90/200
Bo Normal 0.75 0.05
n Normal 0.7 0.04

‘Numbers with slashes are values for the Teal Am-
phibian/Lake Renegade aircraft.

Table 3 Surface spectral density

coefficients for this work

Surface type C, in.rad"'

Smooth highway 8.48E—5
Gravel roadway 7.77E—4
Rough runway 1.63E—3

as the Monte Carlo runs, mainly because of computation of
input statistics.

Results

To compare and evaluate the proposed methods, a Teal air-
craft with random properties landing on a rough runway was
examined by the random matrix method and by the Monte
Carlo hybrid method with plugging-in and interpolation for the
ground field. The mean value of response (as a function of
time) for each case is found in Fig. 2, whereas the response
variances are plotted in Fig. 3. Note that there are large dis-
crepancies between the curves for the Monte Carlo methods
(and it is not clear which Monte Carlo method should be con-
sidered correct), and that the random matrix variance is nearly
halfway between the Monte Carlo variances. Clearly, Monte
Carlo analysis is unsuitable for this problem, primarily because
interpolation of ground statistics (used by the random matrix
method) is superior to interpolation of ground sample func-
tions, which are used by Monte Carlo methods. Thus, the ran-
dom matrix method can be considered more accurate than the
Monte Carlo hybrid methods for this problem and can be used
to investigate the behavior of system response and landing gear
fatigue.

The effects of surface type, aircraft, and property random-
ness can now be examined. First, the mean response for each
aircraft with random or deterministic properties is plotted in
Fig. 4; the mean response is independent of terrain type. The
Teal has a higher mean deflection than the Lake aircraft, and
the results for deterministic properties vary somewhat from
those for random properties. The effects of surface type on
response variance can be seen by analyzing a Teal aircraft with

14
1.2 i\
1 I\ l’\ —
os1H e i =
A WA
RN RWILY,
\ I ‘ / ) — Random Matrix
02 \ I \\J,’ — —MC, Interpolation I
0 U - --- MC, Plug-In -
-0.2 Y
-0.4
0 0.5 1 1.5 2 2.5 3

t(s)

Fig. 2 Mean response obtained by various techniques for a Teal
aircraft with random properties landing on a rough runway.
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g 1 5 NN - — \\’ -
] N
>
1
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0 I f f
0 0.5 1 1.5 2 25 3

t(s)

Fig. 3 Variance of response obtained by various techniques for
a Teal aircraft with random properties landing on a rough run-
way.
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Fig. 4 Mean response for each aircraft with random or deter-
ministic properties.
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Fig. 5 Effects of terrain on response variance of a Teal aircraft
with random properties.
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Fig. 6 Response variance for each aircraft with random prop-
erties landing on a rough runway.

random properties landing on all three terrain types; the re-
sponse variance for each terrain type can be found in Fig. 5.
Of course, rougher surfaces give higher response variances, as
would be expected. For the rough road, the variance is often
larger than the mean response squared, and so it is likely that
the aircraft would leave the ground when landing on this sur-
face. However, the response variance for all landing surfaces
is sufficiently large that response randomness cannot be ne-
glected in this problem.

To see the difference between the responses of the different
aircraft, each aircraft with random properties is analyzed on a
rough road; the corresponding response variances are shown
in Fig. 6. Note that the response variance for the Lake aircraft

2.5
2 ~t vl ol T
/3 =
% 15
= [
X 1
S 1T
I
™~
0.5 ,’ — Random Properties
” — — Deterministic Properties
o4 | | |
0 0.5 1 1.5 2 25 3

t(s)

Fig. 7 Property randomness effects on response variance of a
Teal aircraft landing on a rough runway.
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Paad — Random Properties
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04 | ! 1 !
0 0.5 1 1.5 2 25 3
t(s)

Fig. 8 Property randomness effects on response variance of a
Teal aircraft landing on a smooth runway.

is higher than that for the Teal. Finally, the effects of property
randomness on variance for a rough landing surface are found
in Fig. 7; these effects for a smooth surface are shown in Fig.
8. It is clear from Figs. 7-8 that for rough landing surfaces
the surface randomness is dominant in the response, whereas
for smooth surfaces, the property randomness is more impor-
tant. Thus, the importance of property randomness is depen-
dent upon landing surface, and for rough surfaces, the property
randomness may be neglected, allowing a simpler analysis.

Conclusions

Two approaches for investigating nonstationary random par-
ametric vibration were presented: 1) a time-domain random
matrix method, which used Latin hypercube sampling to obtain
difficult input statistics; and 2) a Monte Carlo hybrid approach,
which combined Latin hypercube sampling and spectral rep-
resentation. Because the spectral representation method ad-
mitted two approaches to finding values of ground field slope
and curvature at values other than at integer multiples of the
space step size, interpolation, and plugging-in, two Monte
Carlo hybrid methods could be examined. These approaches
were used to examine random response in light aircraft landing
gear during a landing. A vibration model of the aircraft was
presented with a simple nonstationary velocity model, yielding
a nonstationary random parametric vibration problem.

The random matrix method and the hybrid Monte Carlo
methods were used to examine two different light amphibious
aircraft with random or deterministic properties landing on
three terrain types. The hybrid Monte Carlo response results
varied widely from each other, and so Monte Carlo analysis
was considered unsuitable for this problem; the random matrix
method was considered accurate. Response randomness could
not be neglected in this problem because the response vari-
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ances were significant compared to the square of the mean
response values. The response results depended heavily upon
the aircraft and the ground surface; property randomness did
not seem to have much effect in this problem for rough run-
ways (and can be safely neglected, yielding a simpler analy-
sis), but it did have a more noticeable effect for smoother
landing surfaces.

The time-domain random matrix method is a fast, reliable,
flexible, and accurate computational technique for nonstation-
ary random parametric vibration analysis. Because the random
matrix method requires property and load statistics as input, in
some cases (such as the problem studied here) it is difficult to
compute these statistics; in this case, Latin hypercube sampling
should be employed to obtain these statistics. On the other
hand, where possible, statistics should be used directly, as was
done for the ground surface in this work. Finally, note that the
random matrix technique can be extended to multiple-degree-
of-freedom systems in a straightforward manner. Thus, the
time-domain random matrix method is recommended for non-
stationary random parametric vibration analysis of linear sys-
tems.
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